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General equations are presented for the diffuse scattering due to local ionic arrangements and displace- 
ments in systems with more than one ion per lattice point. Up to fourth-order terms are included. 
These are placed in a form easy to evaluate in specific cases; examples are given of a solid-solution 
oxide, and an oxide with vacant sites. Methods for employing these equations for the separation of the 
various contributions are discussed. 

Introduction 

Most quantitative studies of diffuse X-ray or neutron 
scattering to reveal local atomic arrangements, such as 
clustering or local order, have been carried out on 
metallic alloys. The techniques are still evolving; see 
Sparks & Boric (1966), Boric & Sparks (1971), Gragg 
& Cohen (1971), Gragg, Hayakawa & Cohen (1973), 
Williams (1974), Hayakawa, Bardhan & Cohen (1975), 
Tibballs (1975) for the latest procedures, techniques 
and error analyses. Currently, there is considerable 
interest in such diffuse scattering from other materials, 
such as oxides and carbides, where diffuse scattering 
can provide information about clustering or local order 
of the high density of point defects or of ions in solid 
solution in such materials; examples are the recent studies 
by Brunel & Bergevin (1969), Chudinova, Kuz'kina & 
Shivrin (197.0, 1971), Billingham, Bell & Lewis (1972), 
Andersson, Gjonnes & Tafto (1974). In metallic alloys 
there is one atom per lattice point, but in these com- 
pounds there can be several. General equations for com- 
pounds have not yet been presented and as a result in- 
vestigators have resorted to various approximations. It 
is now well known for metallic alloys that the diffuse 
scattering contains features due to local atomic arrays 
(clustering or local order) and features due to static 
and dynamic displacements from lattice sites, and that 
both effects can extend out to many shells around any 
given atom. All previous studies on oxides and 
carbides have neglected the scattering due to mean- 
square displacements. As this intensity occurs near 
and under Bragg peaks, in the same location as the 
intensity due to chemical clustering and is of the same 
magnitude, the results of such studies are doubtful; 
studies of short-range order, for which the strongest 
parts of the two kinds of diffuse scattering are separ- 
ated in reciprocal space, may be more correct. These 
prior studies have, however, included the effect of 
average static displacements, but assumed that these 
were radial and did not extend beyond the first- 
neighbor shell. 

In this paper the general equations for diffused 
scattering from a structure with multiple sublattices 

out to fourth-order terms are derived and placed in 
simple form for use with any material. Specific ex- 
amples for two structures, FexO and NaCl-type 
materials, are presented. The required measurements 
to separate the various contributions are given. Actual 
measurements with the methods are appearing con- 
currently (Hayakawa, Morinaga & Cohen, 1974; 
Krawitz & Cohen, 1975). 

1. General theory 

The intensity will be written in terms of moments of 
the general kinematic expression following the pro- 
cedures of Boric & Sparks (1971) for binary alloys. 
The total intensity in electron units (/to,) can then be 
written as: 

N M 

Itot = ~ ~ f . .  exp [ik. (r m --I- r t t  "Jr Amtt) ] 
m g 

N M 

x ~  ~ f , ~ e x p [ - i k . ( r , + r ~ + A , ~ ) ] ,  (1) 
n F 

where: 

m,n=latt ice indices; m (or n) imply ml,m2,m3, the 
triplet required to specify a coordinate in the 
lattice. 

/~, v = sublattice indices, 
fm.,fn~=atomic scattering factors of atoms on the 

¢tth sublattice of the ruth lattice point and the 
vth sublattice of the nth lattice point respectively, 

rm, r. =the positional vectors of the ruth and nth lattice 
point with respect to an arbitrary origin, 

ru, r~=sublattice vectors of the/~th and vth sublattice 
with respect to the lattice points, 

Amu, A.v=small displacement vectors of the atoms 
from their lattice points rm+r.  and r~ +r~, 

N =total  number of lattice points, 
M =number  of sublattices, 
k =the diffraction vector. 

Let exp [ik. (rm-rn)]=Amn , exp [/k. (ru-r~)]=Suv , 
exp [ik. (Am.- A.v)] = exp (ik.  A~,). Furthermore, let 
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x~ be the sublattice fraction of element i on sublattice 
/~ and let p~.~ be the conditional probability of finding a 
j-type atom (or ion) on the vth sublattice of the nth 
lattice point if there is an ith type on the/~th sublattice 
of the mth lattice point• Then (1) may be written as: 

/t°t= E E E E E E X / A D  
m n /z v i j 

• Auv))Pu,S. . . , .  (2a) × (exp (ik u u A . 

The average of the displacement term is taken for each 
set of interatomic vectors associated with i and j 
species whose total probability is ~.Ipu 

Separating the terms in the sum involving the same 
atoms: 

, 2  x,,xvAf~ I t o t = N E E x u f , + E E E E E E  ' j 
It i m n It v i j 

(ma ~ n v) 

x (exp (ik.  A~))S~,vAm,, 

+ E E E E E E  xux~f~fj (exp (ik. A~)) 
m n /t v i j 

(mlt # nv) 

P ~  ( \ 
× - l i  &.A.,, , 

(2b) 

By adding and subtracting the term mp=nv to the 
second and third sums the intensity may be written in 
terms of a component due to the average structure, 
/AVE, and one related to the local order, IL.O. : 

Itot =IAVE +/L.O. , (3a) 

/AVE= E E E E E E x~. x~ f~f: 
m n /.t v i j 

x (exp (ik.  A~{))S.~A,.., (3b) 

i,.o.= Z X E E E X 
m n tt v i j 

x (exp (ik u ( P ~  ) • a . o )  \ ~ - 1  SuvAmn. (3c) 

The inner sum of (30, over i and j, can be simplified 
by separating the term for i=j  and employing the 
relationships: 

P ~ - - 1 -  ~ P ~ ,  (4a) 
k(~i) 

x ~ = l -  Z x~. (4b) 
k(  ~ i) 

Then equation (3c) can be rearranged to yield: 

S .o. X X X X X X  ' • " = x~,x~A(A(exp (ik auv)) 
m n IZ v i # j  

/ 
• A~,v)) ) /1-  - f : ( e x p  (ik u S, vA,n,, 

- 7 ( !  \ 
(5) 

It will now be assumed that the displacements of 
atoms (ions) are small, and that the averages of odd 
powers of displacements vanish for large interatomic 
vectors• Under these conditions, the exponential terms 
in these displacements (A's) can be approximated by a 
series expansion: 

<exp (ik.  A~{)) = <1 + i k  . au~u _ l_(k • -u~,AUV 

i 
3l (k A iJ'~34- 1 ~ltvl - -  ~ ( k  AiJ'~44- 

• • ~ l . t V /  ~ " " " .~ 

_~exp ( -  ½((k. ~...AU~Z'~. 

x [1 + i(k u • A . v ) ]  , 

o r  

=exp [ -½<(k.  A~,)2) 

× exp ( -½<(k .  AJv)2> 
× exp (<k. a~k.  A~)] 

x [1 + i(k u . auv)] , (6a) 

(exp (ik u ,,~ • Au~ )) _ exp ( -  M,) exp ( -  Mj) 

x exp ( (k .  A~k. A{)) 

× (1 + i(k u • A,,v)). (6b) 

A comparison of the expansion of (6b) and the expan- 
sion ofexp (ik.  A~{) will show that the two are identical 
out to quadratic terms• Beyond these terms, the expan- 
sions each include several plus and minus terms which 
tend to cancel especially if displacements are un- 
correlated• Remaining higher-order terms are similar 
except for weighting factors which differ by two or 
three• Without this approximation either the effect of 
all higher-order terms must be neglected, that is, there 
is no term exp ( - M j ) ,  or the term M~ must vary with 
interatomic vector ('Walker & Keating, 1961). The third 
exponential in (6b) is now expanded and substituted into 
(3b) and (3c) and (1 u s u The -Puv/xv) is set equal to ~uv. 
intensity may then be written in terms of moments of the 
expansion, with superscripts indicating the order of 
the moment and f£ implying f~ exp (-M~).  

I~VE = E E E E E E x~x~f;fjSu~A,,,., (7a) 
m n /z v i j 

SXv..=  E E E E E E 
m n bt v i j 

(7b) x ( k .  u 

E E E E E E 
m n /~ v i j 

× ( k  A' .k  J • . AdS~v<~., (:c) 

E E E E E E x ' .xW;f ;  
m n /t v i j 

• . . A.~)S.~Am,,, tTd) × ( k  A~k A{) (k  u 

I ~ V E = ½  E E E E E E x~x~f; f j  
m n /z v i j 

• A~) S,,~Am,,, (7e) x ( k  A ~ k .  j 2 
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etc. 

Sto--~ 2 ~ 2 E 2; ~>w;(f;-I~) 
m n It v i ~ j  X 

'J ( 8 a )  X O~uvSuvAmn , 

I[.o. = i ~ ~ ~ ~ ~ ~ x~x~f ' , ( f : (k .  A~)  
m n It v i ~ j  

A.~) )~ . .S .~  ,,,,, (8b) - f j ( k .  is u A , 

m n lz v i ~ j  

- f j ( k .  a~k. A~))odu~Su~A,,,,,, (8c) 

St.o. =~ E X E E E E x,,xW; 
m n It v i ~ j  

x ( f ; ( k .  A~k. At} (k .  A~) 

• . . a . d ) ~ . ~ s . ~  ~,, ( S d )  - f j ( k  A~uk a { ) ( k  is is A , 

it.o.=~ 2 2; ~ 2; 2; E x>,S; 
rn n It v i # j  

x (f~(k.  A~k. A~) 2 

- f j ( k  A~k s 2 is • . a ~ )  )~.~S,,~A.,,,, (8e )  

etc. 
Equation 

readily seen 

lOVE= E 
m 

=2; 
/7l 

=E 
m 

(7a) represents Bragg peaks as may be 
by rearrangement: 

x~f)S_~)Am,, 2; (Y E x,.S;S.)(E E ' 
n It i v j 

Z ( Z f ' . S . ) ( Z f  "~S-~)A,,,,,, 
n y 

FF * A m,, . 
n 

(9) 

Equation (8a) represents the intensity due to local 
order (clustering or short-range order) of atoms or 
ions, Is.o, and it can be written as: 

Is.o= ~ Z Z E E ~ x~ux{(f;-fJ)z~.{S. ',A,,,,," (10) 
m n It v i > j  

The rn/x=nv term gives the 'Laue monotonic', i.e. 

IL.M. = N Z Z Z x~x~ ( f ;  __fj)z. (11) 
Ix i >  j 

By dividing and multiplying (113) by this Laue mono- 
tonic scattering, 

I s ~ o -  / , . M .  N E E E ~ E E  
m n t t  v i > j  

i d ' ' 2 
x . x , ( f  , - - f  j )  U 

x y E y - - ,  j ....... , ............ . .-. x . , xu . ( f  i _ f , y  au~Su~Am. (12) 
g '  i > j  

The e coefficients vanish at large interatomic dis- 
tances. Therefore, the sum over m, n, lt, v can be re- 
placed by N times a single sum over interatomic vec- 
tors la~ + ma2 + has: 

SS,O=I,.,.M. Z Z Z 
l m n 

i J ' ' 2  U 

............... ~. ~ ?xu'i x u ' ( f  i - f  ..... ' ............... • 2- j u~ 
Ix" i > j 

A,.,.. (13) 

The brackets [ ].v imply the summation over all possible 
combinations of sublattices with a given l,m,n. 

The first moments from both local order and the 
average lattice (7b and 8b) involve average displace- 
ments, and are thus due to static, not dynamic dis- 
placements. They can be combined to give a term 
similar to the well known 'modulation' from binary 
alloys [see Sparks & Boric (1966) for a discussion of 
this term for alloys]: 

I t = l i v e  + I[.o. , 

=i 2 X X X X [x~x$f',2( k" A~u ~> 
m n It v i 

+ ~ x ~ , x W i . 5 ( k ,  a ' , ~ ) +  Z x ' , x W ? ( k .  A ' , ~ ) G  
j (  # i) j (  # i) 

- Z x ~ x l f ; f J (  k"  u u 
j (  ~ i) 

= i ~ E E E E E  
m n /z v , 

l ' 2  t k . j ~ i j  

. / ( , o  ( k  u x Y. EY. l s " ' z  .A. . )  
xu,xu,(f  , - f ) )  

IX' i> j 

xtux{ f i f j ( 1 -  oy.{ ) 
(k A~{)] S.~A,,,,, 

+ Z  I : I : 2 '  ~ ' ' ~  " - s¢*i) xu'xu'( f  i - f  s) 
g" i > j  (14) 

Defining: 
t "2 , J -  ,J'~ x u f  , (Xv + X xv%~, 

. _ s ( ~ o  ( l  5 a )  
Fu~- E E ~, X~ 'X{ ' ( f ; - f j )  2 ' 

It" i > j  

and 
i j " " i j  - -  f f ' l~v)  x . x ~ f  ifj(1 (15b) U - -  

r , ~ -  X E E  ' s ' xu,xu,(f  , - f 's)  2 ' 
#" i > j  

equation (14) becomes" 

v i 2 2 2 ; 2 2 2  " 
m n /z v [ j 

= ~.~. E Z ~ t~ ~ F~<k. A~>,~.1.~A,~.. 06) 
1 m n i j 

With identical manipulations, the second moments 
can be combined. These represent thermal diffuse 
scattering (TDS) in the harmonic approximation and 
the analog to Huang intensity in binary alloys, due to 
mean-square static displacements of ions from their 
average positions in the structure: 

• A~), , . . , ] ,~a,m..  . . Fuv(k Auk. I2=ILM Z E Z [ E E  u , 
1 m n i j 

(17) 
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Similarly the third and fourth moments can be 
combined, the latter corresponding to second-order 
TDS:  

Ia=iLL.M. ~ ~ ~ [ ~  ~ r ~  
l m n i ) 

x <k. A~k. A~> <k. a~)t~,],vA,m,,  (18) 

I4=½IL.". Z Z ~ [ ~  Z F~u ~ 
I rn n i j 

x<k  A~k a J\2 ~ ~ . (19) • • v / l m n J u v  - / t  l m n  

The third and fourth-order terms will be discussed 
in § 4. We consider now only terms to the second 
moment. The vector products are simplified by sub- 
stituting the following equations: 

k =  2rc(h,b~ + hzb2 + h3b3), (20a) 

A ~ - -  l i  2i + A~'a3 (20b) - A. at + Au a2 

The expression for the total diffuse intensity can then 
be written as follows, with p representing a component 
of the coordinate system in reciprocal space: 

/ o  

/~.M. 

3 3 3 

-/SRO + ~ QPhp + ~ RPh~ + ~ S p" p+ 'hpho+, , 
P P P 

(21) 

ISRO= ~ Z Z ~tm.A,m., (22a) 
l m n 

Qp=i ~ ~ ~ 9,Pm.A,m,,, (22b) 
l m n 

RP= ~ ~ ~ a~m.A,m,, , (22c) 
l m n 

(22d) - -  e l m  n Za l n l n  , 

i j ' ] 
- ~ i>~  x "x ' ( f i - f ' -# )2  °~iu~(Imn) 
~ ' m " =  Z Z Z  ' J ' xu,xu,( f  i - f j ) 2  . ' 

Ix' i > j  (23a) 

9finn = 2zcE~ ~ u pU Fuv<A.v >lmnlllv, (23b) 
i ) 

3fro, 4nz[~ ~ u p, 1,, = Fu. (A .  A. ),,,,,],,v, (23c) 
i j 

il ,m,=8n2[~ ~ r ' u / , p , , p + l . J \  1 (23d) 1 '  1 iV \ / - . l i t  Z.I v / l m n . l t l v  • 

i j 

It was first pointed out for binary alloys by Sparks & 
Boric (1966) and Bor ie& Sparks (1971) that the terms 
in (21) can be separated because of their different 
symmetries in reciprocal space. This will be considered 
for these more complex materials in § 3. But first in § 2 
some examples will be given of the direct manner by 
which these equations can be simplified for specific 
systems. For simplicity, the primes on the scattering 
factors will no longer be employed. 

2. Applications to specific systems 

A. FexO 
In wfistite (Fe~,O) the oxygen ions form a complete 

f.c.c, structure• However, the octahedral cation sites 
are partially filled by iron ions, the rest of the sites 
being vacant (Jette & Foote, 1933). In addition, there 
are iron ions in tetrahedral sites (Koch & Cohen, 
1969); in what follows the two sets of tetrahedral 
sites are referred to as 'Tet 1' and 'Tet 2'. At low 
temperatures, there is a clustering of vacancies and 
tetrahedral ions and the clusters exhibit a long-range 
order with space group Pm3m or P-43m. At high 
temperature, the structure is that of NaC1, space 
group Fm3m, with only local atomic order. Pertinent 
information concerning these arrangements is sum- 
marized in Table 1. Substituting the values in this 
table into (11) yields: 

__ Fe  V Fe  V 2 2xr XT)fFe (24) IL.M. -- N(xo Xo + 

The term N is the total number of lattice points (not 
sublattices). 

Table 2. The three types o f  interatomic vectors and the 
corresponding sublattice pairs, FexO 

Type of lmn* Possible sublattice pairs 
1. l, m, n all [2p]/4 F.c.c.-F.c.c., Oct-Oct, Tetl-Tetl, 

l + m + n = [4q]/4 Tet2-Tet2 

2. l,m,n all [2p]/4 F.c.c.-Oct, Oct-F.c.c., Tetl-Tet2, 
l + m + n = [4q + 2]/4 Tet2-Tet 1 

3. l,m,n all [2p+ 1]/4 F.c.c.-Tetl, F.c.c.-Tet2, Oct-Tetl, 
Oct-Tet2, Tet 1-F.c.c., Tet2-F.c.c., 
Tet 1-Oct, Tet2-Oct 

* p and q are integers. 

Table 1. Sublattice fractions and sublattice vectors for  the FexO system 

Sublattice fractions* 
Type of sublattice Sublattice vector Oxygen Iron Vacancy 

F.c.c. 0,0,0 xv ° = 1 xWe=0 x v =0 
Octahedral ½. ½, ½ X°o = 0 ~o F . . . .  = x -- ~rFe X v = 1 -- (X -- 2XVD 
Tetrahedral 1 ¼,¼,¼ X°l =0 ~rt- re = ~r- re xVl = 1 - x  v~ 
Tetrahedral 2 2 ,  2 ,  ~ x °2 ,  = 0 XT2=.x.TFe . r e  XVT2 = 1 - -  XVr e 

* x is the ratio of total number of iron to total number of oxygen ions (as in Fe.~O). Superscripts denote the kind of iron, 
subscripts the site. 
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The sublattice vectors are given in Table 2. Direct 
substitution into (23a) for type 1 vectors yields: 

.vFe ~,.V,.vFeV ") ~ F e  ~-V,~FeV 
- _ .~o ~o~oo + ' -~r  ~ r~r r  . (25a) 

Fe V °~lmn ( X o  XO + 2xrFeXT ' 

for type 2 vectors: 
, F e ,  V .FeV 

2~T . ,~T~TT - 

O~lmn ~ ~.Fe ~V (-~o -~o + 2x~ exv) (25b) 

for type 3 vectors: 
{ v.Fe v.VNFeV _1_ vFevg,.~,FeV'h 
k.a.O .a,T~.OT r .a, T .a,O',*.TO ] 

O~lmn-  - -  , . F e ,  V (ao ao + 2X~ "exv) (25C) 

When the intensity is separated into its component 
terms (see § 3) and Isgo is Fourier transformed, it is 
the a's that are obtained, but not the ~,~.u If enough 
information is obtained from (25b) to plot aFT~V VS. 
interatomic distance, values can be extrapolated to 
Type I interatomic vectors and subtracted to obtain 
~VeV Furthermore, for w~stite, typically XVo"=0.9, O O .  
xoV=0.1, xFe=0"015 and xV=0.985. Then 0.0> 

, F e .  V ~ F e V  ..re. w.wv_ 0"001 whereas 0.887 > ao ar~or --" .a, T A O ~ T O  I" - -  

-0"013. Thus the last term in (25c) can be ignored to 
a first approximation. 

Proceeding in the same manner, the coefficients of 
the size-effect modulation, the ),'s, (23b) can be 
evaluated. 

(i) Type 1 vectors" 

= + x (26a) 9~m,, Y~v + Y~,o + Y}Irl 7r2r2 
OO OO FeV . .FeV \ ----2n[FvF (xvv)+--O0~F~F*/"F~F*X+v, o0 / Foo (aoo / 

_~_ LTVFe/ ,~ .VFe\  ~_ gTVV/ .~ .VV\  _L ")/" g T ' F e F e / ~ F e F e \  
z O0 \ 'a 'O0 / 7- at O O \ ' a ' O 0 / T  x-,k--TT \.a, TT  / 

LTFeV/~,-FeV \ VFe VFe VV VV + - - r r  \ ~ r r  / + F r r  ( x r r  ) + F r r ( X r r ) ) ] .  (26b) 

Since the average displacements for any inter- or 
intrasublattice must be zero, the following relation 
must hold" 

x . p u ~ ( x . ~ ) - O  (27) 
i j 

for any set of/~ and v. This yields the following rela- 
tions for type 1 vectors. 

( x ° ° ) = 0 ,  (28a) 

x F e D  FeFe / ~.FeFe \ 2_ ~ F e D  FeV / ~ F e V  \ 
0 - - 0 0  \ 'a'O0 / ~ ' a ' O  "L O0 \ ' ~ 0 0  / 

V VV VV -u'~V DVFe/'cVFe\ + x o P o o ( X o 0 ) = O  (28b) v ' ~ O * O 0  \ ' ~ 0 0  / 

x F e D F e F e / , • F e F e \  2_ ~ . F e D F e V / - ~ F e V \  ._t_ ~ V D V F e / ~ . V F e \  
T Z T T  \ ' ~ T T  / r ' ~ T  ~t TT  \ ' ~ T T  / q ' ~ T *  T T  \ ' ~ T T  / 

V VV V V + x r P r r ( , X r X r ) = O .  (28c) 

Equation (28b) is written in terms of ~oo~F~V" 

v Fe  X o X  0 ( 1  ^.VeV'x -~oo  ~ ((x~&V) + (x%°)) 
__ ( x g e 2  _.[_ . .Fe . .V_FeV'~  
- - . , o  . , o ~ o o  J ( x g ~  "°)  

(xV~ ..w~V..F~V~ 
- + ~ o  ~ o ~ o o  ~ ( x ~ Y , ) .  (29a) 

Similarly the third equation becomes: 

xVx~°(1 -~W) ( ( x W )  + (x~° ) )  
(xp2 + ..~..v. FeW = -  ~ ~ T ~  ~ ( x W  °)  

(x~  vo -¢ For - + x ,  x ,a~ ,  ) ( x ~ ) .  (29b) 

By substituting these relationships into 9~m~ for type 1 
vectors with f v = 0 ,  and employing equations (15): 

2n x V  ~.FeV~ 
o t Z o o  ) ~f{m"= ( X  OrexOV 21- 2XrWXT [ x F e (  XFe  + ( x F ~  F e )  

AV Fe  Fe  A_ ~ V ~ F e V ~  2Xr (xr (XF]-V~)] (30) T .~.T~TT / 

(ii) Proceeding in the same way for type 2 vectors: 

~ m n :  7 ~ 0  -F ~)F-~-  ))~'lT2 -~- ~ ' 2 T 1  , (31a) 

4n - ~..Fef..-Fe _L ~,-V,~FeVh ( x F ~ F e )  
~ m n  ~ Fe V Fe V "~T k-4"T ~ . ~ T ~ T T  ] • 

(Xo Xo + 2Xr Xr) 
(31b) 

(i i i) Type 3 vectors: 

5#m. = 7~rl + Y~r2 + Y~rl + 7~r2 
+ ,x + ,x 

+ Y~rlt Yr,o ~rzv + Y}2o, (32) 

2n Fe Fe A_ ~.V~,FeV~ 
Y*~{mn= Fe V Fe---VT 2 [ X o  ( X  T T .a,T~OT ] ( X g ~  -Fe)  

(Xo Xo + 2Xr xr)  
_lt_ ~ F e {  ~.Fe ~.V~,FeV'~ (XFT~Fe)]  (33) • a'T \"~0 AV "a'O~TO ] 

From extrapolations of displacements for type 2 
,,VeVe may be estimated for type 1 vectors and vectors ."'TT 

hence the term .~O0"VeVe is obtained. As the two displace- 
ments for type 3 vectors are essentially identical, all 
displacements can be obtained. This is more detailed 
information than is obtainable for metallic alloys, 
where individual displacements cannot be isolated. 
For metallic alloys ratios of scattering factors appear in 
the y's and it has been generally assumed in the separa- 
tion procedure that these do not vary over the volume in 
reciprocal space where measurements are made to 
obtain the modulation term involving the y's. There 
are no scattering factor ratios in the y's for FexO so 
they are true Fourier coefficients and should be ob- 
tainable with higher precision than for metallic 
systems. This result will always occur when vacancies 
are involved. 

We now proceed to the other coefficients, the terms 
6 and E which involve mean-square displacements 
and cross products of displacements. There are no 
simplifying relationships for these terms. Hence for 3, 
(23c) with (15): 

(i) Type 1 vectors: 

t~{mn = ( ~ F  + J ~ O  + J ~ ' I T I  + J } Z T 2  , (34a) 
4~z 2 

2 O O = ..F~..V V~ V 2 [ f o ( X v X v )  + x w c z  
(aO aO + 2Xr x r ) f  v~ o a w  

X ( X g  e - [ - "  V .  F e V ,  .a'O{ZO0 J ( x F e x F o  e )  

"9 . .Fe  ,°2 { . .Fe  ..V..FeV~, +--~r JF~*r  + ~r~rr  ) (X~"X~e)] • (34b) 
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(ii) Type 2 vectors: 

aa[mn = (~ frO + (~ ~) F AV 6 ~1T 2 "Jr- ~ } 2 T 1  , (35a) 
4~ z 

_ F e  O F e  

- -  Fe V 2X  T X T ) f  ve (X 0 No ..~ Fe V 2 [Xo fofve(Xv.XO > 

Fe Fe O + Xo fv~fo(Xo XF > 
Fe 2 Fe ± .v.V,vFeV~ + 2Xr fv¢(Xr 7- ~r~,rr,  (xF~xFe>] . (35b) 

(iii) 

6i~%, 

Type 3 vectors" 

= ( ~ r l  Jr- 6fTT2 "+" 6 ~ T  1 

"t- (~)T2  -~- ( ~ I F  2l- ~ r l O  "l- ¢~ '2F  "t- ( ~ 2 0  , (36a) 
47~ 2 Fe O Fe  = 2[xr fofv~(,xe xr  > F e ~ V  Fe V 2 Xo -~o + 2Xr X r ) f  v~ 

Fe Fe O Fe  2 + Z Jo<X  > + <Xo J% 
± <xgoxp> X \'~'T w .a,T~.OT ] 

Fe 2 Fe  . . V .  FeV'~ -71-XT f Fe(XO + A,O~TO J <XFTeXFe>] . ( 3 6 b )  

For the e's in (23d): 
(i) Type 1 vectors: 

given in Table 3 and the types of sublattices in Table 4. 
With these tables, and with A and C representing anion 
and cation sublattices respectively: 

Nxc Xc (fMg--fve) 2. (40) I L . M .  = Mg Fe 

Table 3. Sublattice fractions and sublattice vectors 
for  the (Mg, Fe)O system 

Type of Sublattice Sublattice fractions* 
sublattice vectors Oxygen Magnesium Iron 

Anion 0, 0, 0 x ° = 1 x~ g = 0 FVa ° = 0 
Cation ½,½,½ x ° =0 x~ ~ x v~ 1 - x~* 

* xcMg=2XMg, X Fec = 2 X F e ,  x°=2Xo, xMg+xv,=0"5 and Xo=0"5. 

Table 4. The two types o f  interatomic vectors and the 
corresponding sublattice pairs, (Fe, Mg)O 

Type of Imn* Possible sublattice pairs 
1 l+ m + n = [2p]/2 Anion-Anion, Cation-Cation 
2 l+m+n=[2p+ 1]/2 Anion-Cation, Cation-Anion 

* p is an integer. 

Elmn --  ~FF q ~00 q ~T1T1 ~ ~T2T2 , 

87z 2 
- -  -I- X F e / ' 2  [fg<x oyo> 

,-'o "o  + 2XT Xr)fv~ 
. .Fe  - -  . .V..FeVX × J <xg °yg°> 

Fe 2 Fe V FeV + 2xr  fv~(xr  + XrC~rr ) <X~'~YF~)]. t37b) 

(ii) Type 2 vectors" 

xy __.~y ±.~y .~,,y + xy (38a) Elmn-- t :FOT'=OF~:T1T2 6T2TI , 

8~ 2 
Fe O Fe 

V~ v 2Xr Xr) fv ,  (Xo Xo + ~ v 2 [Xo ZofF~<Xv yO > 

Fe Fe O 
- Xo A o f o ( x o  

,~..ver2 r..-v~ - v.v~v, (x~,yV~>] (38b) 
-Jl- ~-'v T J F e t - , V T  -t- .a.T~TT J 

(iii) Type 3 vectors" 
Exy  __ ~ x y  xy 

Iron - -  =FTI "31- EFT2 21- E~YT1 

+ 4Yr2 '¢Y erze + @Ao, (39a) +Erl~+~r]o + xy 
87z z Fe O Fe = 2[Xr fo fr~(xv  xr  > a,.F¢ a,-V Fe V 2 -~o -~o + 2xr  Xr)fF~ 

Fe Fe  O + xr  fFofo(Xr Ye > 
"*O J F c k ' a ' T  ~ ' A T ~ ' O T  ] 
. .Fe  4"2 / . . F e .  ~V~FeV'~  

+ Xr  J v a X o  Xo ro ) . (3%) 

B. (Fe, Mg)O 
Another  useful example is a solid solution of oxides, 

exemplified by the rocksalt  structure of (Fe, Mg)O. 
Depending on the partial  pressure of oxygen, there is 
some trivalent iron present and hence there are some 
cation vacancies for charge neutrality, but their con- 
centration is too small to detect by diffuse scattering. 
There is no tetrahedral occupation. Accordingly, we 
will assume that  both sublattices in the NaC1 structure 
are full. The pertinent sublattice concentrations are 

For  type 1 vectors, ~z.,,, = %4 + O~cc = e~Fe(lmn) and 
for Type 2, ~z.,,,= %c  + e c a  = 0. Tha t  this is so can be 
readily seen; the anion sublattice is completely filled 

ij by oxygen ions. Hence from the definition of % , =  
1 -  P~u~/x~, both P~.{ and x{ are unity for C~cA and for 
~OVe ..OMg both are the sublattice fraction. AC o r  ~AC 

For  the modula t ion and other terms the equations 
can be obtained in the same way and are given in 
Krawitz & Cohen (1975). For  example for type 1 
vectors: 

~ f m n :  ~AA @ ~tC , (41a) 

and from (15), (23b) and (26): 

9'{=, = 2zt[ F°a°a ( x °°> + F~Mg ( x ~  Mg > 

rwv~ /..v,v~ \a (41 b) 
-Jr- - - C C  \"~CC / l  • 

2re 
9 ~ m n :  xMgxFer'eC CtJF~--fMg)" [{(X~g)ZfMg(fMg--fF~) 

+ XygXg%~WfMg(fMg--fv¢)} (X~c gXcMg) 
xFe 2 ") +{(  c ) fv~(fFe--fM,. 

+ ~C"F~"M'NMgF*~'C ~'CC ,rv¢wr rv~ --fMg) } <xgg ~ >1. (41 c) 

It is interesting to note that  in this system, local 
order involves terms in the cation sublattice only, but  
the displacements involve this sublattice and interac- 
tion between the cations and anions. 

Any other system can be readily developed using the 
general equations presented here, after Tables like 1 
to 4 are prepared. In the next section, we wild consider 
the separation of the components  of the diffuse inten- 
sity up to second moments,  and the minimum regions 
required in reciprocal space for this separation. The 
method presupposes that  single crystals are available. 
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While the equations could be averaged for use with 
powders, the difficulty in obtaining satisfactory data 
and analysis in this case even with metallic alloys does 
not seem to warrant the effort. Accurate quantitative 
data in this kind of study require single crystals. Fol- 
lowing the next section on the separation, higher- 
order moments will be discussed. 

3. Separating the contribution to diffuse scattering 

For simplicity the examples of cubic systems, FexO and 
(Mg, Fe)O, discussed above will be employed. Ignoring 
third and fourth-order terms for the moment, (21) is 
identical to the form developed for binary alloys [see 
Boric & Sparks (1971), Gragg & Cohen (1971)]. Only 
the coefficients of the series are different, as shown in 
§ 2. For cubic systems, the total diffuse intensity, 
Io, has m3m Laue symmetry in reciprocal space, that 
is, the intensity is symmetric across planes hg=0, 
across planes h~ =h i  and, owing to the threefold axes, 
ID(h. h2, h3) = Io(h2, h3, hO = Io(h3, hi, h2).  If the total in- 
tensity across these symmetry elements is written and 
corresponding terms equated, numerous symmetry re- 
lationships can be readily obtained and these are sum- 
marized in Table 5. It is immediately apparent that terms 
like Qr(hl,h2,h3) and Q~(hl,hz, h3) c a n  be replaced by 
Q~(hz, h3,hl) and Qx(h3,hl,h2) respectively, and sim- 
ilarly for Rr, R~, Sr~, Sx~. Thus I~ may be written: 

Io(h~, ~ ,  h~) = Isgofh 1, h~, h3  
+ h~ a~(hl, h2, h3) + h2 O~(h2, h3, h0 
+ h3 ax(h3, hi, h2) + h~ Rx(h 1, hz, h3) 
+ h~R:,(hz, h3,h~) + h23Rx(h3,hl, h2) 
+ hj.hzSxr(h~,h2,h3) + h2hzSx~,(hz, h3,h~) 
+ h3h~Sxy(h3, hi, h2). (42) 

Table 5. Symmetries of  the components of  diffitse inten- 
sity for a cubic system 

IsRo(hl, h2, h3) = ISRO( - -  hx, h2, h3) 
= IsRo(h~,  - -  h2, ha)  = IsRo(h~, h2, -- ha) 

Qx(h,,  h2, h3) = - Q ~ ( -  hx, h2, h3) 

= Qx(hl, - h2, h3) = Q.,(hl, h2, - h3) 

R,,(ht, h2, h3) = R~,( -  hi, h2, h.O 
= R~,(hl, - h2, h3) = Rx(hl ,  h2, - h3) 

S.,y(ha, h2, h3) = - S:, j , (-  hi, h2, h3) 

= - S~,~,(hL, -- h2, h3) = Sxr(h~, h2, - h3) 

~s~o(h~, h~, h~) = Is~o(h~, h~, h~) = Xs~o(h~, h~, h9 
Qx(hl, h2, ha) = Qv(h2, h3, h i )  = Qz(h3, hi, h2) 

R~,(hl, h2, h3) = Rr(h2, h3, hi) = Rz(h3, hi, h2) 

S:,,( h~, h2, h~) = S,~( h~, h3, h~) = Szx( h~, h~, h2) 
/SRo(hl ,  h2, h3) = I s R o ( h b  h3, h2) 

= I s a o ( h 3 ,  h2, h i )  = l sgo (h2 ,  h i ,  h3) 

Qx(hi, h2, h3) = Qr(h2, hi, h3) = Qz(h3, h2, hi) = Qx(hl, h3, h2) 

R,,(h~, h2, h3) = R~,(h2, hi, h3) = R~(h~, h2, h i )  = Rx(hx, h3, h2) 

Sxv(ht, h2, h3) = Svz(h3, h2, h i )  = Sxv(ht, h3, h2) = Sxy(h2, h~, h3) 

A. Separation in a volume 
FexO 

Because of the phase factor Atm,=exp [2rci(hff+ 
hzm + h3n)], and since l, m, n are of the form M/4 for 
this material (where M is an integer) all components, 
IsRo, Qx, R~ and Sxy have a periodicity of 4 along h~. 
Accordingly, the various terms can be separated as 
follows: 

R x ( h l , h 2 , h 3 ) = [ I D ( h l  + 4 , h 2 , h 3 )  

- 2ID(h, h2, h3) 

+ Io(hl-4,hz,  h3)]/32, (43a) 

S,,flh~, h2, h3) = [Io(hl, h2, h3) - 1D(hl -- 4, h2, h3) 

- I o ( h l ,  h2 - 4, h3) 

+1o(hl-4,hz-4,h3)]/16 , (43b) 

a x ( h ~ ,  hz, h 3 )  = [Io(hl, h2, h3) --  Io(h~ - 4, h2 ,  h 3 )  

-(8ha-16)Rx(h~,h2,h3) 

-4h2Sxy(h.h2,h3) 

- 4h3Sxy(h3,hl,h2)]/4. (43c) 

Once these terms are known ISRO can be obtained from 
(42); for each value of ISRO at hl,hz, h3 the intensity 
must be known at this point and four other points as 
well. 

From the periodicities and symmetries or anti- 
symmetries across h i = 0  in Table 5, lsko(h.h2,h3)= 
ISRO(4-- hl,h2,h3) = Isso(hl, 4 -  h2, h3) = Isgo(h, h2, 4 -  h3), 
Qx(hl,hz, h3) = - Qx(4-  h ,  hz, h3) = Qx(hl, 4 -  h2,h3) etc. 
Thus only one octant of the 4 × 4 × 4 unit cell in recip- 
rocal space is required. Also from these symmetry 
relationships, by equating the intensities it can be 
readily shown that the phase factors Atm, simplify 
considerably. Thus: 

Is.o(h,,h ,h3)= Z cos 
1 m n 

x cos 2zch2m cos 2zch3n. (44a) 
Similarly, 

Q~(hl,h2,h3) = - Z Z Z ~m, sin 2z~hll 
l m n 

× cos 2zch2m cos 2rch3n, (44b) 

l m n 

× cos 2zch2m cos 2zch3n, (44c) 

Sxy(h,,hz, h3)= ~ ~ Z E,m,-XY sin 2z@l 
1 m n 

× sin 2z~h2m cos 2zch3n. (44d) 

From the symmetries across h~=hj in Table 5 [see 
equations (44)], the minimum volumes can be further 
reduced. Note particularly that Q~ and R~ are symme- 
tric across h2=h3, but that Sxy is symmetric across h~= 
h2. Furthermore, it is easy to show that for any 
component: 

A C 31A - 8 
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A(h~,hz, ha)= A(fix, hz + 2,h3 + 2) 
= A(hl + 2,h2,h3 + 2) 
= A(h~ + 2,hz + 2, ha). (45a) 

This result stems from the fact that 2( l+m) in the 
phase factor is always an integer for this system and 4l, 
4m, 4n are even. Combining these relationships with 
symmetries across h i = 0  and h i=h j  results in 

IsRo(h~,h2,h3) = IsRo(ht, h2 + 2,ha + 2) 

= Isgo(hl, 2 -  h2, 2 -  ha) (45b) 

= IsRo(hl, 2-- ha, 2 -  h2), (450 

Qx(hl, h2, ha) = Qx(hl, 2 - h3, 2 - h2), (45d) 

R=(h~, hz, ha) = R,~(h~, 2 - ha, 2 - h2), (45e) 

S=r(h~, h2, ha) = S~r(2 - h2, 2 - h~, ha). (45f) 

Similarly, 

IsRo(hl, hz, h3) = ISRO(2 -- hx, h2, 2 - ha), (45g) 

Q~(h~, hz, ha) = - Q~,(2 - hi, h2, 2 - ha), (45h) 

R:,(h~,h2,h3) = R=(2 - h~,h2,2 - ha), (45i) 

S~o,(hl, h2, ha) = - S~,(2-  ht, h2, 2 - h3). (45j) 

The final minimum volumes for each component are 
shown in Fig. 1. The five required regions are brought 
together in Fig. 2. The volumes a and b in Fig. 2 are 
required in (43) for Q~, a, b, c for R~ and a, b, d, e for 
S~y. These regions have been placed close to the origin 
so that the size terms (which are multiplied by powers 
of hi) are not too large, and yet far enough along the 
axes to avoid the origin. Also regions like ( h - 4 )  have 
been replaced by ( 4 -  h). These regions make up avolume 
17/192 that of the original unit cell, and can be further 
reduced to 15/192 of the original volume by applying 
the symmetries h i=h i  to Fig. 2, resulting in the region 
in Fig. 3. If sampled at equal intervals of Ah=0.1, 
about 5000 data points are required, three times the 
number for a binary f.c.c, alloy. With modern high- 
intimsity X-ray generators it is estimated that a typical 
measurement under computer control would take only 
about a week. 

(Mg, Fe)O 
The procedure is identical to that presented for 

Fe~O and is therefore presented in abbreviated form. 
Components of the interatomic vectors are of the form 
M/2  so that the periodicity is two, As a result the dif- 
ference equations become: 

R:,(hl, hz, hs)=[l~(h~ + 2, hz, h3) - 2Io(h~,hz, ha) 

+ ID(hl-- 2,h2,h3)]/8, (46a) 

S~,r(h~, h,., h3) = [Io(lh, h2, ha) - lo(hl - 2, hz, h3) 

- In(hl, h z -  2,h3) 

+ l n ( h l -  2 ,hz -  2, h3)]/4, (46b) 

Qx(hl, h2, h3) = l , ( lh ,  h2, h3) - lo(hl, h2 - 2,h3) 
- ( 4ht - 4 ) Rx(lh, h2, ha) 
- 2h2Sxy(hl, h2, ha) 
- 2haSx~,(ha, h~,h2)]/2. (47) 

/ h z  (a) 

I hI 2,0,2 

ha 
(e) 

h ~  2'0'2 

Fig. 1. Minimum repeat volume in reciprocal space (a) for 
ISRO, (b) for Qx and R=, (c) for S~,r. For Fe~,O. 

h, 
6,0,2 

C 

4,0,2 

2,0,7 

5,1,5 
4 0'4 

~,1,3 

,,I ,3 
4,4. 

0,1,5 
1,3,2q 

0,4,4 

0,4,2 

\h 2 

Fig. 2. The composite volume formed by the distribution of 
the common minimum repeat volumes. Fe~,O. 
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Furthermore, IsRo(h~, h2, h3) = IsRo(2 - hi, h2, h3) etc. 
a=(hl, hz, h3)=-O: , (2-h l ,  hz, h3)=Ox(hl,2-h2,h3) etc. 
Again, only one octant is required and the last four 
expressions in Table 5 are employed. The five minimum 
volumes are shown in Fig. 4, labelled a-e in the same 
manner as for FexO. This volume is 68/192 of the unit 
cell in reciprocal space and it can be reduced to 
40/192 by applying the symmetry h~=hj to yield the 
region in Fig. 5. This volume is ½ that for Fe~O. 

B. Separation along lines 
It has been demonstrated for binary alloys that it is 

sometimes possible to obtain the local-order coeffi- 

4,0,4 
2,0,2 ~ 

,0,6 2 
0 , 0 , ~  

h3 

Fig. 3. The minimum volume of measurement in reciprocal 
space for Fe~,O. 

302 

3011 

b h3 

a ~ e I ,22 oo~/ Ol~l 
~ 02 I 

h2 

Fig. 4. The volume formed by the distribution of the common 
minimum repeat volumes in reciprocal space for (Fe, Mg)O. 

I 2052~ 
2O 

I01 ~115 

ha 

Fig. 5. The minimum separation volume in reciprocal space 
for the (Fe, Mg)O structure. 

cients - but not displacements - from data only along 
lines in reciprocal space [Ericsson, Linde & Cohen 
(1971) for b.c.c, systems and Berg & Cohen (1973) for 
f.c.c, systems]. That is, data can be collected along 
selected line segments in the volumes and separated 
with the result that ISRO is obtained along the lines, 
but not enough information is available to invert Qx 
or other terms. If the diffuse intensity is weak and 
broad so that the a's differ from zero only for a few 
neighbor shells, then IsRo along the three lines [h00], 
[hh0] and [hhh] can be written in terms of a few one- 
dimensional Fourier coefficients A~, kl. These coeffi- 
cients can then be obtained by inversion and solved 
simultaneously for the a's. The procedures for 
choosing the lines in the minimum volumes are amply 
documented in the above references. It is only worth 
pointing out here that for FexO the resulting equations 
are exactly the same as for a b.c.c, alloy and for 
(Fe, Mg)O these are the same as for an f.c.c, alloy; it is 
only necessary to halve the coordinates lmn in each of 
the references, to obtain the formulae for these oxides. 

4. The higher-order terms 

(a) In a volume in reciprocal space 
We return now to an evaluation of the third and 

fourth moments, equations (18) and (19). Boric (1970) 
has shown that for thermal diffuse scattering (TDS) 
higher moments can be expressed as convolutions of 
lower-order terms. While this procedure could be 
developed precisely for a pure element, Hayakawa, 
Bardhan & Cohen (1975) have shown that it could also 
be done approximately for the combined static and 
dynamic terms for a binary alloy. This can also be 

A C 31A - 8* 
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done for the more complex situations described in this 
paper. In (23b-d), it will be assumed that, for a given 
interatomic vector lmn, all displacements are equal, 
regardless of the species involved.* This assumption is 
approximately true for even terms when dynamic 
displacements are dominant. For binary systems, 
elastic theory can be employed for the odd terms 
(Hayakawa, Bardhan & Cohen (1975). Then in coor- 
dinates, p (p = 1-3): 

IX=i2nlL.M. ~ ~ ~ ~ [~ ~ F~,~],~ 
p 1 m n i j 

x (AP)z,,,A,m,hp (48a) 

F=4n2IL.M. 2 2 2 2 [ 2  2 F~u~], ' '  
p l m n i j 

x ((Ap)2)t,,.h2A,m,+an 2 2 2 2 2 [2 2 g~],~ 
p l m n i j 

x (APA p+ 1)tm,,Atmnhphp+a (48b) 

I3=8nZiIL.M. E E E 2 Z [E 2 F~],,,, 
p q l m n i j 

× 

+ 16z?iL.M. ~ 2 2 2 2 [2 2 r~,~], ~ 
p q l m n i j 

X (APA p+ 1 ) , r a n ( A q ) l m n A l m n h p h p +  ll'lq (48c )  

14=/L.M.{87C4 ~ ~ ~ ~ ~ [ ~  ~ F~].~ 
p q l m n i j 

p 2  q2  2 2 × ),m,,((A ) 

p q l m n i j 

× ( ( A p ) 2 ) l m n ( A q A q + l  2 ) l ,nn  A lmnhp  h q h q  + 1 

p q l m n i j 

x (APAP+l),mn(AaA'~+l)z,nnAtm,,hphp+JTqhq+l. (48d) 

Defining, from (48a)" 

Fu,lu,(A ),,,,,, 
i j 

from (48) 

and 

and 

(49a) 

i j  p 2 ~p,,,,,=4n2[~ ~ F,,] , ,((A ) ), ..... (49b) 
i j 

-p . ,+ l=Sn2[~  ~] u,.11 /ApAp+I", (49e) Elm n x ttvj/.tv\-_a z_~ / l m n  , 
i j 

t 2 2  " - F . d . . -  B.~ (49d) 
i j 

* More precisely, it is only necessary to assume that the (k. A) 
in the first and third terms are equal and that the (k. A k. zl) in 
the second, third and fourth terms are the same. 

Then: 

13 

lL.M. 

(~ lmn ~ l mn B,, Al,,,,,h~h, 

: } _L :.p+ I ,Ira,_, Az,,,,,hj, hp+ lha , 
- ~ 1 , . .  O . ~  

(50a) 

I4 0,.,A,., ,  

-p -q.q+l  2 + c5o,,,~ lm, /B,,)A l,,,,hp hqhq + 1 
+ ar~p.p+l-q.~+l (50b) -~Zm,, ~ l . , .  /B,v)Az,,,,,hphp+lh~hq+~. 

Th c:s, O's and ~'s are obtained by ignoring 13 and 14, 
with the separation described in § 3, and then these 
higher-order terms can be calculated. Only if these are 
small, can this procedure be trusted to be adequate as 
a correction. It is important to note that a sufficient 
number of Fourier coefficients are needed to properly 
represent the intensities. If the data is taken at 
intervals in h of 0-1, coefficients of lmn up to 10,10,10 
are required to calculate 13 and 14. 

(b) Along lines in reciprocal space 
A direct procedure for including higher-order TDS 

terms has been developed for linear analysis with binary 
alloys (Hayakawa, Bardhan & Cohen, 1975). It was 
shown above that the form of the general equations for 
ID stays the same for the more complex materials 
considered in this paper, as for a binary alloy; only 
the coefficients of the various contributions change; 
therefore, the same linear procedure for higher-order 
terms may be applied as for a binary alloy. The total 
intensity along lines can be written: 

ID(h)=IsRo(h)+hQ(h)+ R(h) {exp [b(h)h2] - 1}. (.51) 

It was shown in the given reference that b(h) is a 
symmetric function of h. Separation equations are 
also given in the above reference; an additional half- 
period must be measured in the examples described in 
this paper. 

5 .  E r r o r s  

The principal sources of error in this kind of analysis 
are the higher-order terms if measurement is made at 
high temperatures, and the assumption that the 
scattering-factor ratios in the size terms [the F terms, 
equations (15)] are independent of position in recip- 
rocal space; this assumption is required for the 
separation, and for the inversion to obtain size coeffi- 
cients. This is adequate for neutrons, but may not be 
so for X-rays. Detailed discussions of such errors for 
binary alloys have already been given (Gragg, 
Hayakawa & Cohen, 1973; Hayakawa, Bardhan & 
Cohen, 1975). Higher-order terms can be estimated 
from the equations presented here, and if they are 
small can be subtracted from the data in a reiteration 
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procedure. The complex but compact volume for 
measurement is chosen to minimize the variation in the 
scattering-factor ratios. Nonetheless, errors do result, 
and because of the complex volume it is difficult to 
write expressions for the errors, or to generalize from 
other results. The recommended procedure to estimate 
errors is to synthesize data in a computer with in- 
formation obtained by a preliminary analysis and then 
to analyze this by the procedures described here. It 
may result that neutron techniques are required for 
accuracy. Alternatively, Tibballs (1975) has suggested 
an extension of this procedure which essentially 
involves measurement of the intensity in a larger 
volume than described here, at points where the 
scattering factor is different but the rest of any term is 
the same. The volume is already large for these 
systems with multiple sublattices, so the feasibility of 
this new procedure is as yet unknown; it is currently 
being tested. 

This research constituted a portion of a thesis sub- 
mitted (by M.H.) in partial fulfilment of the require- 
ments for a Ph.D. degree in Materials Science at 
Northwestern University in June 1973. Support by 
AFOSR under Grant No. 73-2431 Mod. C is gratefully 
acknowledged. 
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Molecular Rearrangements in Organic Crystals, 
I. Potential Energy Calculations for Some Cases of Reorientational Disorder 
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The pairwise potential method was applied to the study of molecular reorientations in organic crystals. 
Several benzene and naphthalene derivatives were considered, along with some simple heterocycles and 
a few more complex compounds. The results of the calculations have been matched, where possible, 
with the results of X-ray analysis and other experimental data. The good performance of the method is 
considered encouraging in view of its application to the study of more complex solid-state processes. 

The most interesting feature of molecular motions and 
rearrangements that occur in the solid state is that 
crystal packing can control the process to a very high 
degree. A theoretical study of such phenomena re- 
quires therefore a good insight into packing forces; 
and, vice versa, a knowledge of experimental facts can 
throw light on crystal force fields. 

The most succesful theoretical approach to the 
problem of crystal forces for organic molecules involves 
the pairwise evaluation of non-bonded interactions 
between atoms by some kind of empirical potential 
(Kitaigorodskii, 1961; Kitaigorodskii & Mirskaya, 
1962; for a recent review, see Kitaigorodskii, 1970); 
early calculations of this kind met considerable success 


